34 research outputs found

    An automated approach to map winter cropped area of smallholder farms across large scales using MODIS imagery

    Get PDF
    Fine-scale agricultural statistics are an important tool for understanding trends in food production and their associated drivers, yet these data are rarely collected in smallholder systems. These statistics are particularly important for smallholder systems given the large amount of fine-scale heterogeneity in production that occurs in these regions. To overcome the lack of ground data, satellite data are often used to map fine-scale agricultural statistics. However, doing so is challenging for smallholder systems because of (1) complex sub-pixel heterogeneity; (2) little to no available calibration data; and (3) high amounts of cloud cover as most smallholder systems occur in the tropics. We develop an automated method termed the MODIS Scaling Approach (MSA) to map smallholder cropped area across large spatial and temporal scales using MODIS Enhanced Vegetation Index (EVI) satellite data. We use this method to map winter cropped area, a key measure of cropping intensity, across the Indian subcontinent annually from 2000-2001 to 2015-2016. The MSA defines a pixel as cropped based on winter growing season phenology and scales the percent of cropped area within a single MODIS pixel based on observed EVI values at peak phenology. We validated the result with eleven high-resolution scenes (spatial scale of 5 × 5 m2 or finer) that we classified into cropped versus non-cropped maps using training data collected by visual inspection of the high-resolution imagery. The MSA had moderate to high accuracies when validated using these eleven scenes across India (R2 ranging between 0.19 and 0.89 with an overall R2 of 0.71 across all sites). This method requires no calibration data, making it easy to implement across large spatial and temporal scales, with 100% spatial coverage due to the compositing of EVI to generate cloud-free data sets. The accuracies found in this study are similar to those of other studies that map crop production using automated methods and use no calibration data. To aid research on agricultural production at fine spatial scales in India, we make our annual winter crop maps from 2000-2001 to 2015-2016 at 1 × 1 km2 produced in this study publically available through the NASA Socioeconomic Data and Applications Center (SEDAC) hosted by the Center for International Earth Science Information Network (CIESIN) at Columbia University. We also make our R script available since it is likely that this method can be used to map smallholder agriculture in other regions across the globe given that our method performed well in disparate agro-ecologies across India

    Evaluating Combinations of Sentinel-2 Data and Machine-Learning Algorithms for Mangrove Mapping in West Africa

    Get PDF
    Creating a national baseline for natural resources, such as mangrove forests, and monitoring them regularly often requires a consistent and robust methodology. With freely available satellite data archives and cloud computing resources, it is now more accessible to conduct such large-scale monitoring and assessment. Yet, few studies examine the reproducibility of such mangrove monitoring frameworks, especially in terms of generating consistent spatial extent. Our objective was to evaluate a combination of image processing approaches to classify mangrove forests along the coast of Senegal and The Gambia. We used freely available global satellite data (Sentinel-2), and cloud computing platform (Google Earth Engine) to run two machine learning algorithms, random forest (RF), and classification and regression trees (CART). We calibrated and validated the algorithms using 800 reference points collected using high-resolution images. We further re-ran 10 iterations for each algorithm, utilizing unique subsets of the initial training data. While all iterations resulted in thematic mangrove maps with over 90% accuracy, the mangrove extent ranges between 827–2807 km2 for Senegal and 245–1271 km2 for The Gambia with one outlier for each country. We further report “Places of Agreement� (PoA) to identify areas where all iterations for both methods agree (506.6 km2 and 129.6 km2 for Senegal and The Gambia, respectively), thus have a high confidence in predicting mangrove extent. While we acknowledge the time- and cost-effectiveness of such methods for the landscape managers, we recommend utilizing them with utmost caution, as well as post-classification on-the-ground checks, especially for decision making

    Large-Scale High-Resolution Coastal Mangrove Forests Mapping Across West Africa With Machine Learning Ensemble and Satellite Big Data

    Get PDF
    Coastal mangrove forests provide important ecosystem goods and services, including carbon sequestration, biodiversity conservation, and hazard mitigation. However, they are being destroyed at an alarming rate by human activities. To characterize mangrove forest changes, evaluate their impacts, and support relevant protection and restoration decision making, accurate and up-to-date mangrove extent mapping at large spatial scales is essential. Available large-scale mangrove extent data products use a single machine learning method commonly with 30 m Landsat imagery, and significant inconsistencies remain among these data products. With huge amounts of satellite data involved and the heterogeneity of land surface characteristics across large geographic areas, finding the most suitable method for large-scale high-resolution mangrove mapping is a challenge. The objective of this study is to evaluate the performance of a machine learning ensemble for mangrove forest mapping at 20 m spatial resolution across West Africa using Sentinel-2 (optical) and Sentinel-1 (radar) imagery. The machine learning ensemble integrates three commonly used machine learning methods in land cover and land use mapping, including Random Forest (RF), Gradient Boosting Machine (GBM), and Neural Network (NN). The cloud-based big geospatial data processing platform Google Earth Engine (GEE) was used for pre-processing Sentinel-2 and Sentinel-1 data. Extensive validation has demonstrated that the machine learning ensemble can generate mangrove extent maps at high accuracies for all study regions in West Africa (92%–99% Producer’s Accuracy, 98%–100% User’s Accuracy, 95%–99% Overall Accuracy). This is the first-time that mangrove extent has been mapped at a 20 m spatial resolution across West Africa. The machine learning ensemble has the potential to be applied to other regions of the world and is therefore capable of producing high-resolution mangrove extent maps at global scales periodically.</p

    A Rapidly Assessed Wetland Stress Index (RAWSI) Using Landsat 8 and Sentinel-1 Radar Data

    No full text
    Wetland ecosystems are important resources, providing great economic benefits for surrounding communities. In this study, we developed a new stress indicator called &ldquo;Rapidly Assessed Wetlands Stress Index&rdquo; (RAWSI) by combining several natural and anthropogenic stressors of wetlands in Delaware, in the United States. We compared two machine-learning algorithms, support vector machine (SVM) and random forest (RF), to quantify wetland stress by classifying satellite images from Landsat 8 and Sentinel-1 Synthetic Aperture Radar (SAR). An accuracy assessment showed that the combination of Landsat 8 and Sentinel SAR data had the highest overall accuracy (93.7%) when used with an RF classifier. In addition to the land-cover classification, a trend analysis of the normalized difference vegetation index (NDVI) calculated from Landsat images during 2004&ndash;2018 was used to assess changes in healthy vegetation. We also calculated the stream sinuosity to assess human alterations to hydrology. We then used these three metrics to develop RAWSI, and to quantify and map wetland stress due to human alteration of the landscape. Hot-spot analysis using Global Moran&rsquo;s I and Getis-Ord Gi* identified several statistically significant hot spots (high stress) in forested wetlands and cold spots (low values) in non-forested wetlands. This information can be utilized to identify wetland areas in need of further regulation, with implications in environmental planning and policy decisions
    corecore